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Outline of the Lecture

Current approaches for evaluating brain status
The need for assessing dynamic brain function
The Synchronous Neural Interactions (SNI) test
The future

The Need - 1

Like any other organ of the body, the function of the 
brain needs to be assessed to evaluate its status in 
health and disease.  However, unlike any other organ 
of the body, no good tests of brain function are 
available.  

Typically, we rely on behavioral examination, be it 
standard neurological examination, psychiatric 
interview, or neuropsychological testing.  These 
exams are typically lengthy and can take up hours or 
days.
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Current Approaches for 
Evaluating Brain Status - 1

Behavioral
History (routine)
Neurological examination (if indicated)
Structured psychiatric interview (if indicated)
Battery of neuropsychological tests (if indicated)

Structural
Magnetic Resonance Imaging (MRI, if indicated) 
Diffusion Tensor Imaging (DTI, research)

Current Approaches for 
Evaluating Brain Status - 2

Chemical
Magnetic Resonance Spectroscopy (MRS, research)
Positron Emission Tomography (PET, research)
Other (if indicated: cerebrospinal fluid, blood, etc.)

Electrophysiological
Electroencephalogram (EEG, if indicated)
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Current Approaches for 
Evaluating Brain Status - 3

“Functional”
fMRI (research)
O15 PET (research)

The need for Assessing 
Dynamic Brain Function

Obvious

Current tests
None, really
The previous tests/examinations address 
structure, chemistry or, only indirectly and non-
specifically, brain function
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Neural Communication - 1

The essence of brain function is  
communication among neural ensembles.

Therefore, alteration in brain function should 
be reflected in disturbed communication.

Conversely, disturbed communication can be 
informative about disordered brain function.

Neural Communication - 2

Neural communication is accomplished by 
ongoing, dynamic interactions among multiple 
neuronal ensembles.

These interactions can be positive or negative 
and can occur at different time lags.

They can be estimated using the cross 
correlation function (CCF).
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Magnetoencephalography
(MEG)

• Measures magnetic signals in the brain
Direct (true) brain activity
High fidelity
High accuracy
High temporal resolution (ms)

• The ideal tool for measuring neural 
interactions

The MEG instrument at the Minneapolis Brain Sciences Center 
(Magnes 3600WH,  4-D Neuroimaging, San Diego, CA)

• 248 axial gradiometers
(low noise)

• 1 kHz sampling rate
The Dewar

Liquid helium
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The MEG Signal

MEG reflects integrated synaptic activity of 
neuronal populations direct neural measure.

It is not distorted and not delayed passing 
through tissues faithful and instantaneous 
information about brain events.

Provides outstanding temporal resolution (in  
milliseconds).

MEG Instruments and Signals

Current MEG instruments consist of a dense array of 
sensors (SQUIDs) that cover the whole head
Sensors are magnetometers or gradiometers (axial or 
planar)
The MEG instrument at the Brain Sciences Center has 
248 axial gradiometers
Raw MEG data are time series of sampled MEG signal 
Data are typically collected at a sampling rate of 1,017 
Hz for a single trial of 60-s duration, yielding 60,000 
data values
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The Synchronous Neural 
Interactions (SNI) test - 1

This test 
assesses dynamic brain function
by evaluating neural interactions 

at high temporal resolution
using MEG

The Test is:

Simple (eye fixation only)
Noninvasive (no sensors touching the head)
Safe (just recording MEG activity)
Short (~1 min in duration)
Dynamic (temporal resolution of 1 ms)
Robust (almost identical results from subject to 
subject)
Sensitive to changes in brain function (excellent 
discriminating power for disease groups).  
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Data Acquisition

Subjects fixate a spot for 60 s
Data acquired @1017 Hz (hardware filters: 
0.1-400 Hz)
This yields 248 time series of ~60,000 values 
each

Data Analysis - 1

Data are analyzed as:
Single trials
Unsmoothed
Unaveraged
Free of cardiac artifact
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Data Analysis - 2

Analyses are performed to estimate 
quantitatively the synchronous (i.e. zero-lag) 
interactions between signals from pairs of 
sensors to assess dynamic brain function.
Step 1:  Calculate all pairwise zero-lag cross-
correlations
Step 2:  Calculate the partial zero-lag cross-
correlations within the 248-sensor network

Data Analysis - 3

To calculate any true (i.e. non-spurious) cross-
correlation, the time series should be 
stationary (or quasi stationary) and non-
autocorrelated

If not, the CCF can be misleading by 
reflecting influences of the series 
themselves, unrelated to the true relations 
between the series 
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Data Analysis - 4

Therefore, MEG time series are 
“prewhitened” by fitting an ARIMA 
(AutoRegressive Integrative Moving Average) 
Box-Jenkins model and taking the residuals

This procedure yields practically stationary 
and non-autocorrelated series from which CCF 
is estimated

The Problem

Given 30628 values, find subsets of 
size k that could perfectly separate 
groups of subjects with various brain 
diseases
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The Solution

First pass (2007)
Genetic algorithms to search the 
immense space
Linear discriminant analysis to estimate 
percent correct classification

Currently (2010)
Simple reduction of space parameters
Bootstrap-based classification

Test (60 s)

Just fixating the spot

●

Appendix A 
Presentation 7 - Georgopoulos

RAC-GWVI Meeting Minutes 
June 28-29, 2010 
Page 161 of 214



Normal Subject

Chronic Alcoholic Beginning Sobriety:  Day 1
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Day 2

Day 3
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Day 4

Day 5
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Day 6

Day 7
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Day 15

Normal Subject
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Medians of 10 normal subjects

Assessment of Dynamic Brain Function: 
Synchronous Neural Networks

All possible zero-lag partial cross-correlations 
between 248 sensors (= 30,628)
Positive or negative
1-ms temporal resolution = true synchronicity
Simple fixation

Langheim, F.J.P., Leuthold, A.C. and Georgopoulos, A.P.  (2006) Synchronous 
dynamic brain networks revealed by magnetoencephalography (MEG) 
Proceedings of the National Academy of Sciences USA 103: 455-459.
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Zero-lag (1-ms synchronous) Partial Correlations
Of Prewhitened (stationary) MEG Time Series

Langheim et al., PNAS, 2006

Initial Application to Six Groups

Healthy control
Alzheimer’s Disease
Schizophrenia
Chronic alcoholism
Multiple sclerosis
Sjögren’s syndrome (with brain 
involvement) 
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Discriminant Classification Analysis

Linear discriminant analysis
Robust, cross-validated leave-one-out method
100% correct classification of 52 subjects to one of 6 
groups:

Healthy control
Alzheimer’s Disease
Schizophrenia
Chronic alcoholism
Multiple sclerosis
Sjögren’s syndrome

Such sets are found using as few as 10 predictors and 
in numbers far in excess of those expected by chance
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52 subjects, 20 predictors

Georgopoulos et al. (2007) J Neural Engineering 4: 347-355

Sjögren’s
syndrome

Control

Chronic
alcoholic

Alzheimer’s
disease

Schizophrenia

Multiple sclerosis

52 subjects, 40 predictors (another set)
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79 subjects

Sjögren’s
syndrome

Control
Chronic
alcoholicAlzheimer’s

disease

Schizophrenia
Multiple sclerosis

Age 8-100 y

Brain diseases

Alzheimer’s disease Fronto-temporal dementia
Autism Gambling
Autoimmune disorders Hyperthyroidism
Bipolar disorder Mild cognitive impairment
Chronic pain Multiple sclerosis
Chronic alcoholism Parkinson’s disease
Depression Post-traumatic stress disorder
Down syndrome Schizophrenia
Fetal alcohol syndrome Gulf War Illnesses (starting)

Current studies: 
Targeted Subject Groups
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PTSD – Classification

SNI test on 74 veterans with PTSD as the 
primary disorder vs. 250 healthy people

Externally cross-validated, bootstrap-based 
classification

Excellent results (published): 97% sensitivity, 88% 
specificity
Update: 80 PTSD veterans, 284 controls: 

96% sensitivity, 95% specificity

Best promise for a PTSD neuromarker
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The Basic Science Behind the Test: 
Small-scale, High Temporal Resolution 
Synchronicity

Our findings indicate a problem (in 
brain disease) with synchronous 
interactions among small neuronal 
populations

A new basic science principle?

Sources of Synchronicity

Recurrent collaterals of pyramidal 
cells

Thalamocortical afferents
Specific (parvalbumin)
Widespread, multifocal (calbindin)
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Recurrent pyramidal cell  
collaterals

“.. In the resting cortex, assemblies of idling 
neurons may be forced in synchronous grouped 
discharges by the diffuse interaction of 
interconnecting axon collaterals and cortical 
interneurons, synchronizing their spontaneous 
activity …”

Stefanis, C. & Jasper, H. (1964)

Calbindin

Parvalbumin

Jones EG (2001) The thalamic matrix and thalamocortical synchrony.
TINS 24:595-601 

Thalamocortical projections
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Thalamocortical Synchrony

“Cortex is driven by weak but synchronously 
active thalamocortical synapses”

Bruno, R.M. & Sakmann, B. (2006)

A new basic science principle?

The present results suggest that fine-
level synchronicity may be a fundamental 
aspect of cortical function that is 
differentially disrupted by different 
disease processes, yielding a disease-
specific signature.
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The Roadmap

Study as many subjects and diseases as 
possible
Stratify healthy controls (gender, age)
Disease groups
Excellent throughput (10-15 subjects/day)

Future

The SNI test has the prospect of becoming the 
first routine test for:
Assessing dynamic brain function
Aiding in differential diagnosis
Monitoring disease progression 
Evaluating the effects of intervention
The invention has been patented (University 
of Minnesota & US Government) and licenced 
to Orasi Medical, Inc. (Minneapolis, MN)
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In group comparisons using the nonparametric Kolmogorov-Smirnov test to assess the 
difference between SNI distributions, we found that the distributions of healthy veterans (N = 

234), veterans with PTSD (N = 160), veterans 
with GWVI alone (N = 84), and veterans with 
GWVI+PTSD (N = 7) differed highly significantly 
from each other (P<0.001), except for the 
comparison of PTSD vs. GWVI+PTSD, which 
was not statistically different. Interestingly, there 
was a pattern in the relative SNI distances 
among those groups, as follows. We used 
Smirnov’s Z statistic as a proximity (e.g. 
distance) measure in a nonmetric 
multidimensional scaling analysis (MDS).  
 
Fig. 1. MDS plot of four groups based on 
distances between their SNI distributions. Notice 
the distinct placement of the 4 groups, the 
unique location of the Control group far away 
from the other 3 groups, and the orderly 
progression of the disease groups along 
Dimension 2, where PTSD and GWVI occupy 

extreme locations with the GWVI+PTSD group in-between. 
 
It can be seen in Fig. 1 that the control, GWVI, and PTSD-related groups occupied distinct 
locations in the MDS space; specifically, Controls were farthest away from all other groups in 
Dimension 1, which attests to the unique property of this group being healthy. In contrast, the 
other 3 groups lined up on the other side of Dimension 1 in a fashion that was orderly along 
Dimension 2, starting from the bottom (PTSD) to the middle (GWVI+PTSD) to the top (GWVI).  

 
In a different analysis, we performed a 
hierarchical tree modeling on the same data to 
better identify possible clustering of subject 
groups.  The results are shown in Fig. 2.. The 
following can be seen.  (1) There are 2 branches 
in the tree (from the top, the tree’s origin) 
separating healthy (control) from diseased 
veterans.  (2) The Disease branch (to the right) 
further splits in 2 distinct branches, identifying 
two distinctly different disease entities, namely 
GWVI and PTSD.  (3) Finally, the composite 
group (GWVI+PTSD) falls in-between. Notice the 
independence of Controls, the clustering 
together of the PTSD and GWVI+PTSD groups, 
and the intermediate location (within the disease 
cluster) of the GWVI group. 

The MDS and tree modeling results, taken 
together, demonstrate unequivocally that GWVI is a distinct brain disease, separate from PTSD.  

	  




